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Mathematical Appendix to ‘Progressive Services…’  

(For convenience of reference, equation numbers in this Mathematical Appendix follow from 
those in the Appendix in the article.)   
 
A.  Proof of Proposition 2  

     Proceeding backwards and up the saddle-path in the final Regime 1 (Fig 1), either (a) 

11 / SS nn&  will fall to 0 while 11 / MM nn&  remains at 0, or (b) 11 / MM nn&  becomes positive while 

11 / SS nn&  is still positive. We consider first the latter possibility, which implies that Regime 1 
has, proceeding backwards, given way to Regime 2 in Appendix A.1.  We also note an 
important preliminary fact.  At the transition point between Regimes 1 and 2, GG /&  (= 

)//( 1111 SSSS nnvv && +−  = )//( 2222 nnvv && +− , with all kk vv /&  being continuous) will have to 

be continuous: should it jump discontinuously, the same will have to be true of 11 / SS nn&  and 

22 / nn&  individually, which implies a discontinuous jump in Lr (since 11 / MM nn&  equals 0, and 
using equation (A2) can be seen to be continuous, at the transition point), violating the labour 
market equilibrium condition (36) (all other terms in (36) can be shown to be continuous).  
Thus, 11 / SS nn&  and 22 / nn&  will each have to be continuous as well, and so will ZZ /& , 
implying that the slope of the saddle-path at the transition point is also continuous. The same 
applies at any other transition point between two regimes. 

     Formally, then, a backward transition from Regime 1 to 2 will occur if the saddle-path 
cuts the 0/ 11 =MM nn&  locus of Regime 2 at a point at which 11 / SS nn&  from either regime 
(which are equivalent at a point at which 0/ 11 =MM nn& ) is positive.  It is easily shown that 
this requires that the saddle-path cut the 0/ 11 =MM nn&  locus anywhere to the right of a ray 
from the origin given by  
   (A21)   Z   =   GMS

1
111 )]1()][1([ −−− αβαθ     

From equations (A2) and (61) it may be seen that the horizontal intercept of the 
0/ 11 =MM nn&  locus of Regime 2 lies strictly between the origin and the horizontal intercept 

of the 0/ =GG&  locus of Regime 1 (the saddle-path in Regime 1 must lie to the right of this 
latter locus).  Denoting the intersection point between this latter locus and the above ray by 
point H, it follows that the 0/ 11 =MM nn&  locus must pass to the right of point H, failing 
which the saddle-path will cut it to the left of the above ray.  It turns out that in the 
negatively-sloped case, which requires 3/1)1( 11 <− Mαβ , this  cannot be satisfied, while in 
the other cases, depending on parameter values, it can.  After straightforward manipulations 
we obtain the following necessary lower bound on )1( 11 Mαβ −  if a transition from 1 to 2 is to 
occur: 
   (A22) )1( 11 Mαβ −   ≥   max. [1/3, })]1([)(3/{1 1

1
1 −− −−+ Sa αθρ ]  

The second argument on the right exceeds 1/3 when )1( 1Sαθ −  is at its lower bound given by 
the right side of (64), falls as )1( 1Sαθ −  rises, and may fall below 1/3 when )1( 1Sαθ −  

reaches a hypothetical maximum of 1.  In the region where the second argument does not fall 
below 1/3, )1( 11 Mαβ −  and )1( 1Sαθ −  are thus ‘substitutes’.  A high )1( 11 Mαβ −  implies 
that innovation in M1 will persist longer in the growth process, and a high )1( 1Sαθ −  that 
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innovation in S1 will commence earlier, and either of these will conduce to these innovation 
phases overlapping with each other. 
 
     We next show that, proceeding backwards into Regime 2 from the transition point, the 
saddle-path will remain negatively-sloped – it cannot turn rightwards, implying that, 
proceeding forwards now, both G and Z are falling, nor can it turn downwards, implying that 
G and Z are rising forwards.  In the former case, a vertical line drawn at some value of G to 
the right of the hypothetical turning-point would intersect both arms of the saddle-path, once 
when GG /&  is negative, and again, at a lower value of Z, when GG /&  is positive: however, 
from (A4) GG /&  is an increasing function of Z, so such a scenario is not possible.  A 
precisely analogous argument can be employed to exclude the latter case should the 
coefficient, of G now, in (A5) be positive or zero.  If the coefficient is negative, that of Z can 
be seen to be negative also, and the 0/ =ZZ&  locus in this case will be negatively-sloped, and 
will have a negative horizontal intercept.  Setting up the resulting phase-diagram, it is easily 
shown that if the saddle-path is ‘initially’ negatively-sloped (as it is at the transition point 
from Regime 1 to 2), it will going backwards always remain so, and thus not turn down.  
 
     Proceeding backwards along the saddle-path in Regime 2, a point will be reached where 

11 / SS nn&  = 0, since from (A1) and (A4) the vertical intercept of the 0/ 11 =SS nn&  locus lies 

below that of the 0/ =GG&  locus.  From (A1) and (A3), if 
ZGS )1()]1()1([ 22122 αβαθαθ −+−−−  is positive at that point, 22 / nn&  will be positive 

there, and conversely.  Although we have earlier argued that −− )1( 22 αθ  )1( 1Sαθ −  is likely 

to be negative, we also argued that 2β  exceeds ω  and, a fortiori, 2θ , and moreover 
proceeding up the saddle-path G is declining and Z is rising.  Thus, it appears plausible to 
suppose that 22 / nn&  remains positive, and so the backwards crossover is from Regime 2 to 3: 
the alternative case is quite straightforward, with the backwards trajectory transiting from 
Regime 2 to Regime 4, whence from the resulting phase diagram it has to continue 
backwards in the same northwest direction, and then, upon crossing the  = 0 locus, 
transition to Regime 6 (analyzed below) and remain there, all the way towards the vertical 
axis if necessary.   

      Again, it can be shown that in Regime 3 the backwards trajectory will maintain a 
northwest movement.1  It will then, as it converges towards the vertical axis, either remain all 
the way in Regime 3, or transition to Regime 6, in which 22 / nn&  is 0 and only 11 / MM nn&  is 
positive, and remain there.2    

                                                 
1 From (A9) it is not possible to have a parameter configuration such that the coefficient of 
G/a is negative and that of Z/a positive.  In all other cases, with the backwards crossover 
from Regime 2 to 3 occuring in a northwest direction, the resulting phase diagrams show that 
the trajectory cannot transition to any other phase. 
2 In Regime 6, all three loci – 0/ =GG& , 0/ 11 =MM nn& , and 0/ =ZZ&  – will intersect at a 
common point in the positive quadrant, and will all be negatively-sloped, with the flattest (the 
algebraically largest) slope belonging to the 0/ =GG&  locus, followed by the 0/ =ZZ&  and 
then the 0/ 11 =MM nn&  loci.  The backward saddle-path trajectory will thus extend all the way 
towards the vertical axis.  It should be mentioned that there appears to exist a slight 

11 / SS nn&
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     Lastly, we briefly consider the case in which the first backward transition is from Regime 
1 to 5 – with 11 / SS nn&  falling to 0 before 11 / MM nn&  becomes positive, if ever, so that only 

 is positive.  It is readily shown that in Regime 5, all three loci – 0/ =GG& , 0/ =ZZ& , 
and 0/ 22 =nn&  – are negatively sloped, and do not intersect in the positive quadrant, with the 

0/ 22 =nn&  locus being outermost, followed by the 0/ =ZZ&  locus.  Between the 0/ =GG&  
and 0/ =ZZ&  loci, the backwards trajectory will have a northwest movement, and cannot 
transition to any other region in this regime’s phase diagram.  Proceeding backwards, the 
trajectory may either remain in Regime 5 all the way towards the vertical axis, or transition to 
Regime 3, in which  11 / MM nn&  also becomes positive.  A necessary condition for the latter is 

>− )1( 11 Mαβ  1)]/1(2[ −+ aρρ , which ensures that the vertical intercept of the 0/ 11 =MM nn&  
locus of Regime 3 is above that of the 0/ =GG&  locus of Regime 5, noting that the two 
regimes are equivalent at any point along the 0/ 11 =MM nn&  locus.  (At the same time, 

)1( 11 Mαβ −  should not be so high that the first backwards transition was from Regime 1 to 2, 
in which case the preceding analysis applies.)  Should the system cross into Regime 3, the 
preceding analysis then applies, from then backwards.  This completes the proof of the 
Proposition.                                                          
 

B.  First-Order Conditions of the Social Planner’s Optimization Problem, and Some 
Preliminary Relationships 
 

(A23)   
M

S

L
H
∂
∂   =  MM LY /)1( 1

21
σββ −−−  – )( 2

1
2 φ+− naq   =  0, where 

(A24)    YM  =  22211121
2

/
21

/
1

1 βαββαβββ
MMMMM xnxnLA M−−  

(A25)   
S

S

L
H
∂
∂   =  SL/)1( 2θθτ −−  – )( 2

1
2 φ+− naq   =  0 

(A26)   
1M

S

x
H

∂
∂   =  1

1
1 / MM xY σβ −  – 12

1
2 )( Mnnaq φ+−   =  0   

(A27)   
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S

x
H

∂
∂   =  2

1
2 / MM xY σβ −  – 22

1
2 )( nnaq φ+−   =  0      

(A28)   
1S

S

x
H
∂
∂   =  1/ Sxτθ  – 12

1
2 )( Snnaq φ+−   =  0     

(A29)   
2S

S

x
H
∂
∂   =  22 / Sxτθ  – 22

1
2 )( nnaq φ+−   =  0 

(A30)   
1rS

S

L
H

∂
∂   =  1

1
1 SS naq −  – )( 2

1
2 φ+− naq  0≤ ;  =  0 if 01 >rSL    

                                                                                                                                                        
theoretical possibility that, instead of transiting backwards from Regime 3 to 6, the trajectory 
transits from Regime 3 to 5, in which 0/ 11 =MM nn&  and only 22 / nn&  > 0. A sufficient 
condition to exclude this is 2/1)1( 11 >− Mαβ .  The likelihood of this slight theoretical 
possibility is somewhat greater if )1( 22 αβ −  is close to or exceeds )1( 11 Mαβ − , but this is 
itself unlikely since it would tend to imply a low share of labour in YM.  We thus ignore this 
possibility, also because it does not affect the Stages of Growth pattern identified in the text.    

22 / nn&
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(A31)   
1rM

S

L
H

∂
∂   =  1

1
1 MM naq −  – )( 2

1
2 φ+− naq  0≤ ;  =  0 if 01 >rML  

(A32)   1Mq&  = 1Mqρ –
1M

S

n
H

∂
∂ = 1Mqρ – ])(/[ 12

1
21

1
111

1
1 MrMMMMM xnaqLaqnY φαβ σ +−+ −−−  

(A33)   1Sq&   =  1Sqρ – 
1S

S

n
H
∂
∂   =  1Sqρ – [ ])( 12

1
21

1
1

1
1

1
1 SrSSSS xnaqLaqn φτθα +−+ −−−−  

(A34)   2q&   =  2qρ  – 
2n

HS

∂
∂   =  2qρ  –  −++− aLqnY rM //)[( 22222

1
2 ατθβ σ  

                                                                        )])(( 222
1

2 SM xxnaq ++− φ  
(A35)   ;0≥φ   02 =rLφ  
(A36)   0221111 === −

∞→
−

∞→
−

∞→ nqeLimnqeLimnqeLim t
tMM

t
tSS

t
t

ρρρ , 
as well as the equations of motion (23), with Lr2 replaced using the labour-market-clearing 
condition. 
 
     The foregoing conditions give rise to some useful preliminary ‘regime-independent’ 
relationships (not dependent on whether any given kk nn /&  is positive or 0):  

(A37)  MM LY /)1( 1
21

σββ −−−  = )( 2
1

2 φ+− naq  = 11
1

1 / MMM xnY σβ −  = 22
1

2 / MM xnY σβ −  =   
                   SL/)1( 2θθτ −−  = 11/ SS xnτθ  = 222 / Sxnτθ  

(A38)  YM  =  222111 /)1(
2

/)1(
1

/1
2

1
2 )( σααβσααβσφ −−−− + nnnaq MM

M   
(obtained from equations (1)-(3), (A37), and the same normalization of AM (=

2121
21

)1(
21 )1( ββββ ββββ −−−−−−− )  as employed previously), 

(A39)   1111 // SSSS nnqq && +   =  ρ  – )1()( 1
1

1
11 −−−

SSS nq ατθ    

(A40)   2222 // nnqq && +   =  ρ  – ])[1()( 22
1

2
1

22 τθβα +−−− Rnq ,   where 
(A41)   R  =  σ−1

MY  
(A42)   1111 // MMMM nnqq && +   =  ρ  – Rnq MMM 1

1
1

1
11 )1()( βα −−−   

 
     Finally, (A39) is a nonlinear first-order differential equation in 11 SS nq  alone, which has 
either the degenerate solution 
(A43)   11 SS nq   =  ρατθ /)1( 1

1 −
−
S  

for all t, or in the non-degenerate case can be solved to yield 
(A44)   11 SS nq    =   ]/)1([ 1

1 ρατθ −−
S  + ρρ /)( Cte + , 

where C is an arbitrary constant.  The latter solution does not satisfy the transversality 
condition, however, and hence (A43) holds – irrespective of regime.   
 
C.  Implications of the Foregoing Conditions 
 
(a)  Equality of  11 SS nq  and 22nq  over a strictly positive time interval implies, as pointed out 
in the article, that their respective rates of change are equal over this interval, which from 
(A39) and (A40) implies that R (= )1( −− σ

MY ) is fixed in this interval, and given by (73) in the 
article.  From (A38), fixity of R, and hence YM, and of 22nq  (= 11 SS nq , fixed by (A43)) 
implies that n2 has also to be fixed, as asserted in the text. 
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(b)  Analogously, from (A30)-(A31) and (A39)-(A42) it is easily seen that if any two of 
11 / SS nn& , 22 / nn& , and 11 / MM nn&  are strictly positive over a strictly positive time interval 

(requiring that the rates of change of the corresponding qknk be equal) then R, and hence YM, 
cannot change during that interval.    
 
D.  Further Analysis of the Socially Optimal Path   
 
     We first study Regime SP5, in which only 22 / nn&  can be positive.  Letting W2 and 

),( 21 nnN M  denote 1
22 )( −nq  and 222111 /)1(

2
/)1(

1
ααβααβ −−−− nn MM

M  respectively, and using (A40) 
and other equations, Regime SP5 is characterized by:  
(A45)   22 /WW&   =  ρτθβα σσσ −+−

−−−− }),ˆ(){1( 22
)1(

21
/1

2
1/1

2
1

2
1

WnnNWa M   

(A46)   22 / nn&   =  )1(
21

/1
2

1/1
2

1 1

),ˆ(
−−−− −− σσστ nnNWaWa M  

and a further equation, in 11 / MM WW&  ((A47) below, with nM1 fixed and n2 varying: it should 
be noted that the ii WW /&  differential equations (i = S1, 2, M1) are all regime-independent, but 
which ni variables in those equations are fixed and which changing are regime-dependent). 
With 1Mn  fixed at 1ˆMn  (to be determined subsequently), (A45) and (A46) generate a phase-
diagram in n2-W2 space.  Both 0/ 22 =WW&  and =22 / nn& 0 loci are positively sloped, and we 
obtain Fig 2 below.  
 
     Since, as will be seen, SP5 will going forward be succeeded by SP1, the steady-state value 
of 2W , *

2W , is simply the inverse of 11 SS nq  as given in (A43).  It is easily shown that strict 
positiveness of the steady-state value of Lr (fn. 25 of main text) implies that the two loci in 
Fig 2 intersect in the positive quadrant, at 2Ŵ  say, and that 2

*
2 ŴW < .  Thus, in SP5 there 

exists a unique north-east trajectory commencing at n20 (not drawn) and leading to point A in 
Fig 2, and when A is attained there will be an instantaneous switch to SP1, entailing no 
change in W2 or WS1 (= (qS1nS1)-1), but an instantaneous switch in labour devoted to R&D 
from innovation in set 2 to set S1.  (A rising W2 during SP5 implies a falling q2n2, until it falls 
to equality with the unchanging qS1nS1, at which point the switch occurs: note also that the 
steady-state point A is not at the intersection of the two loci, unlike in customary analyses.)   
The analysis is of course conditional on the value of 1ˆMn : a higher value of this would cause 
the loci to shift leftwards, except at the origin, but the final value of 2W  remains at *

2W , while 
the final value of n2 will be lower. 
 

     We next examine Regime SP6, in which only 0/ 11 ≥MM nn& .  Using (A42) and other 
equations, and letting WM1 denote (qM1nM1)-1, we now have 
(A47)   11 / MM WW&   =  ραβ σσσ −−

−−−− )1(
201

/1
1

1/11
11

1

),()1( nnNWa MMM  

(A48)   11 / MM nn&   =  )1(
201

/1
1

1/1
1

1 1

),(
−−−− −− σσστ nnNWaWa MMM  

and (A45) above, with n2 now fixed and nM1 varying. With n2 fixed in this regime at n20 we 
have a phase-diagram in nM1–WM1 space.  We require that the productivity term for set M1 

)1( 1
11 −−

Mαβ  be large enough that 11
11 )1(/ −− <− aMαβρ , failing which this regime cannot form 
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part of the optimal solution3: the resulting phase-diagram is very similar to Fig 2, with n2 and 
W2 replaced by nM1 and WM1 and with the 0/ 11 =MM nn&  locus cutting the 11 / MM WW& = 0 locus 
from above (but with the latter locus rising continually, without a finite asymptote).  We also 
note that if, proceeding forwards now, SP5 is to succeed SP6, this will have to occur at a 
point at which the rising W2 path cuts the rising WM1 from above, after which WM1 rises above 
W2 ( 11 MM nq  falls below )22nq , and both converge to their respective steady-state values at 
exactly the same finite time, the time at which the switch to SP1 occurs.4    
 
     Heuristically, it is helpful to visualize these developments by using horizontal and vertical 
cross-sections of a three-dimensional phase-diagram (Fig 3 below).  In analyzing this, we 
note first that our system is ‘sequentially block-recursive’: in Regime SP5 (A45) and (A46) 
form a self-contained dynamic system in n2–W2 space, while the behaviour of WM1 depends 
on that of n2 and W2; in SP6 (A47) and (A48) are self-contained, and influence the behaviour 
of W2.  In the horizontal n2–W2 plane in Fig 3, drawn for SP5, we have, to avoid clutter, 
drawn just the 0/ 22 =WW&  locus, as well as the trajectory BA commencing from n20 and 
ending at the steady-state point A.  In the vertical W2–WM1 plane we have for the same 
Regime drawn a cross-section of the contemporaneous trajectory CD, which has to reach the 
steady-state point D at precisely the same time as point A below is attained (the 

0/ 11 =MM WW&  locus for SP5 is not drawn).  Notice that point D lies above the 45o line, since 
*

2
*

1 WWM > .  We now come to the critical point.  Proceeding backwards from the steady-state 
points A and D along the respective cross-sections to the start point of Regime SP5, which is 
where 202 nn = ,5 what assurance is there that, at the start point, point C will lie on the 45o 

line, as it must (as explained earlier, the crossover into SP5 occurs exactly when 21 WWM = )?  
To assure this, 1ˆMn  has to be chosen accordingly, which serves to pin down the solution for 
this variable, denoted *

1Mn .  Thus, the preceding Regime SP6 will have to prevail until 1Mn  
rises to this value, and the final steady-state value of n2 is then determined by this and the 
steady-state values of YM and W2.  It follows that *

1Mn  is a function of the initial condition n20: 
the steady-state values of 1Mn  and n2 are thus not independent of this particular initial 
condition of the model!  We also note (a) that as 1ˆMn  is varied the paths BA and CD will 
change, except for their ending values *

2W  and *
1MW  and the requirement that point B lie 

somewhere along the n2 = n20 line, so as to achieve equality of the start values of W2 and WM1 
of SP5 (when *

11ˆ MM nn = ), and (b) at the very beginning of the optimal growth process, when 
SP6 commences, the values of the co-state variables q2 and qM1 will as usual have to be 

                                                 
3 nM1 could then only rise if WM1 falls, and WM1 would then continue to fall even after nM1 
ceases rising, at an rate that eventually violates the transversality condition.   
4 The steady-state value *

1MW  *,)1(/( 1
11 RM −= −αβρ  at which )0/ 11 =MM WW&  must thus 

exceed *
2W , which can be shown to require that )1( 1

22 −−αβ  not be too far below )1( 1
11 −−

Mαβ  
(otherwise the system would transition directly from SP6 to SP1, and the final value of R 
would be different): it must however be below )1( 1

11 −−
Mαβ , otherwise SP6 would not be part 

of the optimal path, which would simply transition from SP5 to SP1. 
5 Since n2 is constant during SP6, which as pointed out below is the first phase of the optimal 
growth process, its value n20 at the start of SP5 is the same as its value at the commencement 
of the entire optimal growth process. 
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chosen to ensure that the resulting W2 and WM1 paths arrive at the above-indicated SP5 start 
value at the same time. 
 
     Formal validation of the foregoing heuristic argument turns out to be a highly complicated 
affair, and in Section D below we linearize the model in the SP5 phase and provide a precise 
algebraic solution for *

1Mn , clearly showing its dependence on n20.    Finally, using (A45) and 
(A47), at any switch-point between SP5 and SP6 (at which WM1 = W2), we have 

2211 // WWWW MM
&& −  = RM )]1()1({[ 1

22
1
11 −−− −− αβαβ – )}1( 1

22 −−ατθ W2.  The square-
bracketed term is positive (fn. 4 above), and R is declining as YM grows.  Thus, it is possible 
for the entire term in braces to be positive at a low value of YM, implying a switch from set 
M1 to 2, and to be negative at another hypothetical switch point at a higher value of YM, but it 
is not possible for there to then be a later switch to set 2 again.  Given *

2
*

1 WWM > , however, 
and continuity of the optimal Wi trajectories, innovation in set 2, and not set M1, must occur 
immediately prior to the final switch to SP1.  Thus as asserted the forward sequence of stages 
is indeed from SP6 to SP5 to SP1. 
 
E.  Linearization of Regime SP5 of the Social Planner’s Problem 
 
     Terminal values *

1MW  and *
2W  of Regime SP5 have been provided earlier, and *

2n , and 
thence *

1Mn , are to be determined.  Letting the superscript ‘d’ denote actual minus steady-state 
value, and x the column vector )',,( 221

ddd
M nWW  (primes denote transpose), linearization of 

(A47) (with )1(
201

1

),(
−−σnnN M  replaced by )1(

21
1

),ˆ(
−−σnnN M ), (A45) and (A46) around the 

steady state yields, in matrix notation: 
   (A49)   x&   =  Ax  +  b,    
where the elements of the matrix A are 
   (A50)   a11  =  *)1( 1

11
*

1 RW MM −−αβ    ( =  ρ ) 
   (A51)   a12  =  *

2
1*

1 /)1( WWM
−−− σρ  

   (A52)   a13  =  *
2

11
22

*
1 /)1)(1( nWM

−− −−− σαβρ  
   (A53)   a21  =  0 
   (A54)   a22  =  *

22
1

2
1

2 ]*)[1( WR τθσβα +− −−    
   (A55)   a23  =  *

2
12*

2
1

22 /*)1(])1([ nRW −− −−− σαβ  
   (A56)   a31  =  0 
   (A57)   a32  =  *][ 1*

2 Rn −+− στ   
   (A58)   a33  =  *,)1()1( *

2
1

22
1*1 RWLa r −−+ −−− αβσ  where 

   (A59)   *
rL   =  *][1 *

2 RaW +− τ , 
and b is the column vector (0,0, )'**

2 rLn .  From the third row of (A49) we thus note that dn2&  is 
not 0 at the steady-state value of x (= )'0,0,0( ), but dn2&  here refers to the left-hand derivative 
of dn2 : as explained earlier, there occurs an instantaneous switch to SP1 at the steady-state 
point, so that the right-hand derivative of dn2  is indeed 0.  
 
     (A49) is a block-recursive system, with dW2

&  and dn2&  not dependent on d
MW 1 : as such, one 

eigenvalue of the system is simply a11 (= )ρ , and the other two are the eigenvalues of the 
lower right 2 x 2 sub-matrix of A.  It considerably simplifies the algebra if we now suppose 
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that the determinant of this sub-matrix, 23323322 aaaa − , is 0, so that these two eigenvalues are 
equal: given that our aim is in part to simply illustrate the existence of Initial Condition 
Dependence in the model, and that a large number of parameters appears in this determinant, 
so that setting it to 0 does not appear to entail particularly severe economic restrictions, such 
an algebraic simplification appears acceptable.  With repeated roots the solution of the 

),( 22
dd nW  block takes the form (for convenience, the start time of Regime SP5 is set at 0): 

   (A60)   dW2   =  Xt
aa

baLe taa +
+

−+

3322

323)( 3322 , 

   (A61)   dn2    =  ][
33

32

3322

3

3322

322)(

22

32 3322 X
a
a

aa
bt

aa
baLe

a
a taa +

+
−

+
++ , 

where L and X are to be determined.  We may then solve for d
MW 1 : 

(A62)  d
MW 1   =  −

+
−

+
+

+ +
−

t
aaa

aaaabe
aL

LaaaaeN taa

r

ta

)(
)(

/
)(

332211

221323123)(
*

1
22321312

1
332211        

                                           X
aa

aaaa
3311

32133312 )( − ,  

with N1 to be determined.  Our system thus has 5 unknowns – *
2n , L, X, N1, and t̂ , say, the 

terminal time, at which the switch from SP5 to SP1 occurs.  We also have 5 equations, 
namely each of ),,( 221

ddd
M nWW  has to equal 0 at tt ˆ= , WM1 (not d

MW 1 ) has to equal W2 at 
,0=t  and ))0(2

*
2

dnn +  has to equal the given initial value 20n .  Thus, *
2n  depends on 20n , as 

we will now explicitly show. 
 
     After some exceedingly tedious derivations (earlier as well), we finally obtain the 
following solutions.  L, which is negative, is, conditional on *

2n , the solution of an implicit 
equation: 

(A63)     *])1()1([
*])1()1([)()(

*])1()1([
*][))((

*
2

1
22

1

*
2

1
22

1*12*11*1

2*
2

1
22

1*1

12*1

)( RW
RWLazLaLa

RWLa
RLaL rrr

r

r

eL −−−

−−+−+
+

−−−

++−
−−

−−−−−−

−−−

−−

− αβσρ
αβσρ

αβσρ
στρ

  =      

         
*][)(

*])1()1(*][)1()1([
12*1

*
2

1
22

1*1*
2

1
22

1*1

RLa
RWLaRWLa

r

rr
−−

−−−−−−

++
−−+−−−

στρ
αβσαβσρ , 

where z = )/(1 *
220 nn− : indeed, *

2n  will appear in this form in all our solution equations.  We 
also have: 

   (A64)   t̂   =  2*
2

1
22

1*1

1*1

*])1()1([
*])[)((

RWLa
RLaL

r

r

−−−
++−
−−−

−−

αβσρ
στρ   +             

   −
−−−

+
−−−

−

*])1()1()[(
)(

*
2

1
22

1*1

*1

RWLa
zLa

r

r

αβσρ
ρ

)*]()1()1([
*])1()1([

*1*
2

1
22

1

*
2

1
22

1*1

ραβσρ
αβσ

+−−−
−−+

−−−

−−−

r

r

LaRW
RWLa   

   (A65)   X  =  *
22

1
2

1
2

*
2

1
22

1*1

]*)[1(
*])1()1([

WR
LRWLa r

τθσβα
αβσ

+−
−−+

−−

−−−

  + 

      z
R

RWLa
LaR

LaRWLa r

r

rr

*][
*])1()1([

)*]([
*])1()1([

1

*
2

1
22

1*1

*11

*1*
2

1
22

1*1

−

−−−

−−

−−−−

+
−−+

−
++

−−+
στ

αβσ
ρστ

αβσ
 

   (A66)   N1  =  )1)(1( 1
2

1*
1 −− −− ασρ MW { tLa

r

re
LaWR

L ˆ
*1*

22
1

2
1

2

22 *1

]*)[1(
)]([ −

−−− +−
−−
τθσβα

θβτ
 –   

                                              })( ˆ*12*1
2

t
rr eLaLa ρρβ −−−− +            
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  (A67)  

]}.
*][

*)1()1()1()[1(
]*[

)1({ 1

*
2

1
22

1*1
*

2
1

22*
2

*
1

2
1

2

2
*

2
1

22

R
RWLaW

W
W

R
W rM

−

−−−
−

−

−

+
−−+

+−−+
+

−
στ

αβσ
αβ

τθσβ
τθαβ       

])[1( *1

*1
1 z

La
La

r

r −
+

− −

−
−

ρ
σ   +  )1( *

2

*
1*

2 −
W
WW M   =  (–L) *

22
1

2
1

2

*1

]*)[1( WR
La r

τθσβα
ρ
+−

+
−−

−

. 

                                                                    )}1(
*

{ *
2

*
1

2

2
*

2

*
1 −+

W
W

RW
W MM

β
τθ  

 
     (A63) and (A67) jointly determine (–L) and z, after which the remaining unknowns are 
determined.  We thus study these two equations next.  Inspection of (A63) shows that if z = 0, 
(–L) has an explicit solution that is simply given by the right side of (A63) (the term in e 
equals 1 at this value of (–L)): the solution is unique, since the left side is strictly increasing 
in (–L) while the right is constant.  Successive differentiation of (A63) with respect to z also 
shows that (–L) is a decreasing convex function of z, and the same is thus true of the right 
side of (A67), denoted RHS.  The left-side of (A67), LHS, is a decreasing linear function of z, 
and with some algebraic effort it can be shown that the vertical intercept (at z = 0) of LHS 
strictly exceeds that of RHS, given that *

2
*

1 WWM > : in the hypothetical case that these are 
equal, RHS will be tangent to LHS at z = 0, and for z > 0 will lie above it. For *

2
*

1 WWM >  
there is thus a unique solution for z, denoted z* (<16). 
 
      To conclude, z* and n20 will jointly determine *

2n , and *
2n , R*, and *

2W  will jointly 
determine *

1Mn . We assume that the initial value of 1Mn  is less than *
1Mn , so that the first 

phase of the optimal path is indeed SP6: failing this, the system will simply transit from SP5 
to SP1, and the final value of n2 will be determined residually from R*, *

2W , and the initial 

1Mn . 
 
F.  Policy for the Decentralized Economy 

 
          Let (1 – hk) (k = S1, M1, 2) denote the subsidies to purchasers of inputs from group k, 
who thus now pay hkpk for the respective composite inputs, and (1 – bk) the subsidies to 
employers of labour in R&D activities, who thus face wage costs of bkw.  These should be 
inserted in the relevant equations earlier, and in Regime 1 we finally arrive at      
 
(A68)    =  (1/2a){1– Gbhbh SSS ]/)1(/)1(1[ 2222111 αθαθ −+−−  –   
                               Zbh ]/)1(1[ 2222 αβ −+ }, where 
(A69)   Z  =  .)/( 1111 /)1)(/11(

1
)/11(

11
/1/1 MM

MMM nhw αασβσβσσ ατ −−−−−−−  

                                            2222 /)1)(/11(
2

)/11(
22 )/( αασβσβα −−−−− nh , 

(A70)   22 / nn&   =  (1/2a){1 – −−+−− −
111

1
11 /)1()1(1[ SSSSS bhh αθαθ −− − )1( 1

222 hαθ   
        Gbh )]/)1( 2222 αθ − – −−− )/1(1[ 111 MM hαβ })]/)1()/1( 2222222 Zbhh αβαβ −−−  
 
                                                 
6 As *

2W  falls below *
1MW  z* will gradually increase, to some value less than unity: z* = 1 

implies *
2n   is infinite, which is not possible since t̂  would still be finite then.   

11 / SS nn&
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     To attain the social optimum, it is necessary for the values of kk nn /& , k = S1, 2,  from these 
equations to coincide with the corresponding values in Regime SP17 ( 22 / nn&  is of course 0 in 
SP1).   A first requirement for this is that hk = kα  – a standard result, which applies also in 
other regimes.  Also, from inspection of the relevant equations one might conjecture that 

11
1
1 SSS nvb−τ  (= 22

1
2 nvb−τ ) should correspond to 22nq  (we now have that 11

1
1)( SSS nvabw −= = 

22
1

2 )( nvab −  in Regime 1, which justifies the preceding bracketed equality): we later verify 
that this conjecture is correct.  Next, we logarithmically differentiate the equation 11

1
1 SSS nvb−τ =

22nq  with respect to t (noting that in SP1 1122 SS nqnq =  is constant), use (A68) and its 
required equality with the socially optimal , and also note that in (55) the second 
right-hand term should be divided by hS1: we then end up with a differential equation in bS1 
alone, whose only stable solution is a constant one,   
   (A71)  *

1Sb   =  −−−−+ −−−− 11
1

1
22

1 )]1()[1(/{ Sa αθβθρρρ })]1([ 11
22

−− −αβρ  

The terms in braces above, excluding the first term ρ , add up to aLr /  which is positive (fn. 
25 of main text), so that :)1,0(*

1 ∈Sb  the optimal subsidy to R&D in S1 is strictly positive.  

Substituting *
1Sb  into (A70) and equating private and socially optimal 22 / nn& ’s, we derive the 

optimal 2b , *
2b , which is 1 – no subsidy should be given to R&D in set 2, which is of course 

consistent with the zero value of 22 / nn&  in this Regime.    
  
     Next, we consider the decentralized implementation of SP5, through policy intervention in 
Regime 5.  Since only 0/ 22 ≥nn&  in these regimes, only the equalities 

1
222

1
2 )()( −− == Wanvabw τ  must hold, and differentiating the latter equality (note that this 

equality implies differentiability of b2 over time) with respect to t and substituting from 
earlier equations we arrive at 
(A72)   22 b/b&   =  +−−−− −−−− −

22
1

2
)1(

21
/1

2
1/1

2
1 )[1(),ˆ(

1

WnnNWaWa M τθατ σσσ  

                                   )1](),ˆ( 1
2

)1(
21

/1
2

1/1
2

1

−−−− −

bnnNWa M
σσσβ , 

together with Regime SP5’s differential equations in W2 and n2.  Since b2 is continuous, it 
must converge to 1 by the end of SP5: also the first three expressions on the right of (A72) 
are jointly positive, since they equal Lr/a.  If σ  is close to 1, so that the movement of 

)1(
21

/1
2

1

),ˆ(
−−σσ nnNW M  is governed by the rising movement of W2, 22 b/b&  will have to be 

positive throughout (which requires from (A72) that b2 cannot be below 1 by too much to 
begin with), since otherwise 22 b/b&  will become increasingly negative over time.  If σ  is 
large, it is conceivable that b2 will initially fall and then rise, although it appears unlikely on 
economic grounds.  We conclude that the optimal b2 is time-varying, unlike in the Grossman-
Helpman model, and gradually moves to 1 from below, although conceivably non-
monotonically. 

                                                 
7 For this purpose, it is useful to work with the ‘original’ 11 / SS nn&  and 22 / nn&  equations of 
SP1, which are derived by solving (A38) (differentiated with respect to t and then from (66) 
set equal to 0, and with 0=φ ), (A39), (A40), and the equation +11 / SS nn& 22 / nn&  = Lr/a = 

(1/a) – )]1(/[)}1(/)]1()1([1{ 1
1

1
22

1
22

1
1 −−−−−+ −−−−

SS αθραβαθαθ , for 11 / SS nn& , 22 / nn& , 
,/ 11 SS qq&  and 22 / qq& . 

11 / SS nn&
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     Lastly, a precisely analogous characterization applies in respect of the evolution of bM1 in 
the preceding phase, in which decentralized implementation of SP6 is required.  Thus, 
reflecting the optimal sequence of phases of structural change, R&D subsidization evolves 
from subsidizing input set M1, to set 2, to set S1, while intermediate-input purchase is 
optimally subsidized throughout. 
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