Mathematical Appendix to 'Progressive Services...'

(For convenience of reference, equation numbers in this Mathematical Appendix follow from those in the Appendix in the article.)

A. Proof of Proposition 2

Proceeding backwards and up the saddle-path in the final Regime 1 (Fig 1), either (a) $\dot{n}_{S 1} / n_{S 1}$ will fall to 0 while $\dot{n}_{M 1} / n_{M 1}$ remains at 0 , or (b) $\dot{n}_{M 1} / n_{M 1}$ becomes positive while $\dot{n}_{S 1} / n_{S 1}$ is still positive. We consider first the latter possibility, which implies that Regime 1 has, proceeding backwards, given way to Regime 2 in Appendix A.1. We also note an important preliminary fact. At the transition point between Regimes 1 and 2, \dot{G} / G (= $-\left(\dot{v}_{S 1} / v_{S 1}+\dot{n}_{S 1} / n_{S 1}\right)=-\left(\dot{v}_{2} / v_{2}+\dot{n}_{2} / n_{2}\right)$, with all \dot{v}_{k} / v_{k} being continuous) will have to be continuous: should it jump discontinuously, the same will have to be true of $\dot{n}_{S 1} / n_{S 1}$ and \dot{n}_{2} / n_{2} individually, which implies a discontinuous jump in L_{r} (since $\dot{n}_{M 1} / n_{M 1}$ equals 0 , and using equation (A2) can be seen to be continuous, at the transition point), violating the labour market equilibrium condition (36) (all other terms in (36) can be shown to be continuous). Thus, $\dot{n}_{S 1} / n_{S 1}$ and \dot{n}_{2} / n_{2} will each have to be continuous as well, and so will \dot{Z} / Z, implying that the slope of the saddle-path at the transition point is also continuous. The same applies at any other transition point between two regimes.

Formally, then, a backward transition from Regime 1 to 2 will occur if the saddle-path cuts the $\dot{n}_{M 1} / n_{M 1}=0$ locus of Regime 2 at a point at which $\dot{n}_{S 1} / n_{S 1}$ from either regime (which are equivalent at a point at which $\dot{n}_{M 1} / n_{M 1}=0$) is positive. It is easily shown that this requires that the saddle-path cut the $\dot{n}_{M 1} / n_{M 1}=0$ locus anywhere to the right of a ray from the origin given by
(A21) $Z=\left[\theta\left(1-\alpha_{S 1}\right)\right]\left[\beta_{1}\left(1-\alpha_{M 1}\right)\right]^{-1} G$
From equations (A2) and (61) it may be seen that the horizontal intercept of the $\dot{n}_{M 1} / n_{M 1}=0$ locus of Regime 2 lies strictly between the origin and the horizontal intercept of the $\dot{G} / G=0$ locus of Regime 1 (the saddle-path in Regime 1 must lie to the right of this latter locus). Denoting the intersection point between this latter locus and the above ray by point H, it follows that the $\dot{n}_{M 1} / n_{M 1}=0$ locus must pass to the right of point H, failing which the saddle-path will cut it to the left of the above ray. It turns out that in the negatively-sloped case, which requires $\beta_{1}\left(1-\alpha_{M 1}\right)<1 / 3$, this cannot be satisfied, while in the other cases, depending on parameter values, it can. After straightforward manipulations we obtain the following necessary lower bound on $\beta_{1}\left(1-\alpha_{M 1}\right)$ if a transition from 1 to 2 is to occur:
(A22) $\beta_{1}\left(1-\alpha_{M 1}\right) \geq \max .\left[1 / 3,1 /\left\{3+(a \rho)^{-1}-\left[\theta\left(1-\alpha_{S 1}\right)\right]^{-1}\right\}\right]$
The second argument on the right exceeds $1 / 3$ when $\theta\left(1-\alpha_{S 1}\right)$ is at its lower bound given by the right side of (64), falls as $\theta\left(1-\alpha_{S 1}\right)$ rises, and may fall below $1 / 3$ when $\theta\left(1-\alpha_{S 1}\right)$ reaches a hypothetical maximum of 1 . In the region where the second argument does not fall below $1 / 3, \beta_{1}\left(1-\alpha_{M 1}\right)$ and $\theta\left(1-\alpha_{S 1}\right)$ are thus 'substitutes'. A high $\beta_{1}\left(1-\alpha_{M 1}\right)$ implies that innovation in M1 will persist longer in the growth process, and a high $\theta\left(1-\alpha_{S 1}\right)$ that
innovation in $S 1$ will commence earlier, and either of these will conduce to these innovation phases overlapping with each other.

We next show that, proceeding backwards into Regime 2 from the transition point, the saddle-path will remain negatively-sloped - it cannot turn rightwards, implying that, proceeding forwards now, both G and Z are falling, nor can it turn downwards, implying that G and Z are rising forwards. In the former case, a vertical line drawn at some value of G to the right of the hypothetical turning-point would intersect both arms of the saddle-path, once when \dot{G} / G is negative, and again, at a lower value of Z, when \dot{G} / G is positive: however, from (A4) \dot{G} / G is an increasing function of Z, so such a scenario is not possible. A precisely analogous argument can be employed to exclude the latter case should the coefficient, of G now, in (A5) be positive or zero. If the coefficient is negative, that of Z can be seen to be negative also, and the $\dot{Z} / Z=0$ locus in this case will be negatively-sloped, and will have a negative horizontal intercept. Setting up the resulting phase-diagram, it is easily shown that if the saddle-path is 'initially' negatively-sloped (as it is at the transition point from Regime 1 to 2), it will going backwards always remain so, and thus not turn down.

Proceeding backwards along the saddle-path in Regime 2, a point will be reached where $\dot{n}_{S 1} / n_{S 1}=0$, since from (A1) and (A4) the vertical intercept of the $\dot{n}_{S 1} / n_{S 1}=0$ locus lies below that of the $\dot{G} / G=0$ locus. From (A1) and (A3), if $\left[\theta_{2}\left(1-\alpha_{2}\right)-\theta\left(1-\alpha_{S 1}\right)\right] G+\beta_{2}\left(1-\alpha_{2}\right) Z$ is positive at that point, \dot{n}_{2} / n_{2} will be positive there, and conversely. Although we have earlier argued that $\theta_{2}\left(1-\alpha_{2}\right)-\theta\left(1-\alpha_{S 1}\right)$ is likely to be negative, we also argued that β_{2} exceeds ω and, a fortiori, θ_{2}, and moreover proceeding up the saddle-path G is declining and Z is rising. Thus, it appears plausible to suppose that \dot{n}_{2} / n_{2} remains positive, and so the backwards crossover is from Regime 2 to 3 : the alternative case is quite straightforward, with the backwards trajectory transiting from Regime 2 to Regime 4, whence from the resulting phase diagram it has to continue backwards in the same northwest direction, and then, upon crossing the $\dot{n}_{S 1} / n_{S 1}=0$ locus, transition to Regime 6 (analyzed below) and remain there, all the way towards the vertical axis if necessary.

Again, it can be shown that in Regime 3 the backwards trajectory will maintain a northwest movement. ${ }^{1}$ It will then, as it converges towards the vertical axis, either remain all the way in Regime 3, or transition to Regime 6, in which \dot{n}_{2} / n_{2} is 0 and only $\dot{n}_{M 1} / n_{M 1}$ is positive, and remain there. ${ }^{2}$

[^0]Lastly, we briefly consider the case in which the first backward transition is from Regime 1 to 5 - with $\dot{n}_{S 1} / n_{S 1}$ falling to 0 before $\dot{n}_{M 1} / n_{M 1}$ becomes positive, if ever, so that only \dot{n}_{2} / n_{2} is positive. It is readily shown that in Regime 5, all three loci $-\dot{G} / G=0, \dot{Z} / Z=0$, and $\dot{n}_{2} / n_{2}=0$ - are negatively sloped, and do not intersect in the positive quadrant, with the $\dot{n}_{2} / n_{2}=0$ locus being outermost, followed by the $\dot{Z} / Z=0$ locus. Between the $\dot{G} / G=0$ and $\dot{Z} / Z=0$ loci, the backwards trajectory will have a northwest movement, and cannot transition to any other region in this regime's phase diagram. Proceeding backwards, the trajectory may either remain in Regime 5 all the way towards the vertical axis, or transition to Regime 3, in which $\dot{n}_{M 1} / n_{M 1}$ also becomes positive. A necessary condition for the latter is $\beta_{1}\left(1-\alpha_{M 1}\right)>\rho[2 \rho+(1 / a)]^{-1}$, which ensures that the vertical intercept of the $\dot{n}_{M 1} / n_{M 1}=0$ locus of Regime 3 is above that of the $\dot{G} / G=0$ locus of Regime 5, noting that the two regimes are equivalent at any point along the $\dot{n}_{M 1} / n_{M 1}=0$ locus. (At the same time, $\beta_{1}\left(1-\alpha_{M 1}\right)$ should not be so high that the first backwards transition was from Regime 1 to 2 , in which case the preceding analysis applies.) Should the system cross into Regime 3, the preceding analysis then applies, from then backwards. This completes the proof of the Proposition.
B. First-Order Conditions of the Social Planner's Optimization Problem, and Some Preliminary Relationships
(A23) $\frac{\partial H_{S}}{\partial L_{M}}=\left(1-\beta_{1}-\beta_{2}\right) Y_{M}^{1-\sigma} / L_{M}-\left(q_{2} a^{-1} n_{2}+\phi\right)=0$, where
(A24) $\quad Y_{M}=A_{M} L_{M}^{1-\beta_{1}-\beta_{2}} n_{M 1}^{\beta_{1} / \alpha_{M 1}} x_{M 1}^{\beta_{1}} n_{2}^{\beta_{2} / \alpha_{2}} x_{M 2}^{\beta_{2}}$
(A25) $\frac{\partial H_{S}}{\partial L_{S}}=\tau\left(1-\theta-\theta_{2}\right) / L_{S}-\left(q_{2} a^{-1} n_{2}+\phi\right)=0$

$$
\begin{equation*}
\frac{\partial H_{S}}{\partial x_{M 1}}=\beta_{1} Y_{M}^{1-\sigma} / x_{M 1}-\left(q_{2} a^{-1} n_{2}+\phi\right) n_{M 1}=0 \tag{A26}
\end{equation*}
$$

(A30) $\frac{\partial H_{S}}{\partial L_{r S 1}}=q_{S 1} a^{-1} n_{S 1}-\left(q_{2} a^{-1} n_{2}+\phi\right) \leq 0 ;=0$ if $L_{r S 1}>0$
theoretical possibility that, instead of transiting backwards from Regime 3 to 6, the trajectory transits from Regime 3 to 5 , in which $\dot{n}_{M 1} / n_{M 1}=0$ and only $\dot{n}_{2} / n_{2}>0$. A sufficient condition to exclude this is $\beta_{1}\left(1-\alpha_{M 1}\right)>1 / 2$. The likelihood of this slight theoretical possibility is somewhat greater if $\beta_{2}\left(1-\alpha_{2}\right)$ is close to or exceeds $\beta_{1}\left(1-\alpha_{M 1}\right)$, but this is itself unlikely since it would tend to imply a low share of labour in Y_{M}. We thus ignore this possibility, also because it does not affect the Stages of Growth pattern identified in the text.
(A31)

$$
\begin{aligned}
& \frac{\partial H_{S}}{\partial L_{r M 1}}=q_{M 1} a^{-1} n_{M 1}-\left(q_{2} a^{-1} n_{2}+\phi\right) \leq 0 ;=0 \text { if } L_{r M 1}>0 \\
& \dot{q}_{M 1}=\rho q_{M 1}-\frac{\partial H_{S}}{\partial n_{M 1}}=\rho q_{M 1}-\left[\beta_{1} Y_{M}^{1-\sigma} / \alpha_{M 1} n_{M 1}+q_{M 1} a^{-1} L_{r M 1}-\left(q_{2} a^{-1} n_{2}+\phi\right) x_{M 1}\right]
\end{aligned}
$$

(A32)

$$
\begin{equation*}
\dot{q}_{S 1}=\rho q_{S 1}-\frac{\partial H_{S}}{\partial n_{S 1}}=\rho q_{S 1}-\left[\tau \theta \alpha_{S 1}^{-1} n_{S 1}^{-1}+q_{S 1} a^{-1} L_{r S 1}-\left(q_{2} a^{-1} n_{2}+\phi\right) x_{S 1}\right] \tag{A33}
\end{equation*}
$$

$$
\begin{equation*}
\dot{q}_{2}=\rho q_{2}-\frac{\partial H_{S}}{\partial n_{2}}=\rho q_{2}-\left[\left(\beta_{2} Y_{M}^{1-\sigma}+\tau \theta_{2}\right) / \alpha_{2} n_{2}+q_{2} L_{r 2} / a-\right. \tag{A34}
\end{equation*}
$$

$$
\left.\left(q_{2} a^{-1} n_{2}+\phi\right)\left(x_{M 2}+x_{S 2}\right)\right]
$$

(A35) $\phi \geq 0 ; \phi L_{r 2}=0$
(A36) $\operatorname{Lim}_{t \rightarrow \infty} e^{-\rho t} q_{S 1} n_{S 1}=\operatorname{Lim}_{t \rightarrow \infty} e^{-\rho t} q_{M 1} n_{M 1}=\operatorname{Lim}_{t \rightarrow \infty} e^{-\rho t} q_{2} n_{2}=0$,
as well as the equations of motion (23), with $L_{r 2}$ replaced using the labour-market-clearing condition.

The foregoing conditions give rise to some useful preliminary 'regime-independent' relationships (not dependent on whether any given \dot{n}_{k} / n_{k} is positive or 0):
(A37) $\left(1-\beta_{1}-\beta_{2}\right) Y_{M}^{1-\sigma} / L_{M}=\left(q_{2} a^{-1} n_{2}+\phi\right)=\beta_{1} Y_{M}^{1-\sigma} / n_{M 1} x_{M 1}=\beta_{2} Y_{M}^{1-\sigma} / n_{2} x_{M 2}=$

$$
\tau\left(1-\theta-\theta_{2}\right) / L_{S}=\tau \theta / n_{S 1} x_{S 1}=\tau \theta_{2} / n_{2} x_{S 2}
$$

(A38) $Y_{M}=\left(q_{2} a^{-1} n_{2}+\phi\right)^{-1 / \sigma} n_{M 1}^{\beta_{1}\left(1-\alpha_{M 1}\right) / \sigma \alpha_{M 1}} n_{2}^{\beta_{2}\left(1-\alpha_{2}\right) / \sigma \alpha_{2}}$
(obtained from equations (1)-(3), (A37), and the same normalization of A_{M} (= $\left.\left(1-\beta_{1}-\beta_{2}\right)^{-\left(1-\beta_{1}-\beta_{2}\right)} \beta_{1}^{-\beta_{1}} \beta_{2}^{-\beta_{2}}\right)$ as employed previously),
(A39) $\quad \dot{q}_{S 1} / q_{S 1}+\dot{n}_{S 1} / n_{S 1}=\rho-\tau \theta\left(q_{S 1} n_{S 1}\right)^{-1}\left(\alpha_{S 1}^{-1}-1\right)$
(A40) $\dot{q}_{2} / q_{2}+\dot{n}_{2} / n_{2}=\rho-\left(q_{2} n_{2}\right)^{-1}\left(\alpha_{2}^{-1}-1\right)\left[\beta_{2} R+\tau \theta_{2}\right]$, where
(A41) $R=Y_{M}^{1-\sigma}$
(A42) $\dot{q}_{M 1} / q_{M 1}+\dot{n}_{M 1} / n_{M 1}=\rho-\left(q_{M 1} n_{M 1}\right)^{-1}\left(\alpha_{M 1}^{-1}-1\right) \beta_{1} R$
Finally, (A39) is a nonlinear first-order differential equation in $q_{S 1} n_{S 1}$ alone, which has either the degenerate solution
(A43) $q_{S 1} n_{S 1}=\tau \theta\left(\alpha_{S 1}^{-1}-1\right) / \rho$
for all t, or in the non-degenerate case can be solved to yield
(A44) $q_{S 1} n_{S 1}=\left[\tau \theta\left(\alpha_{S 1}^{-1}-1\right) / \rho\right]+e^{\rho(t+C)} / \rho$,
where C is an arbitrary constant. The latter solution does not satisfy the transversality condition, however, and hence (A43) holds - irrespective of regime.

C. Implications of the Foregoing Conditions

(a) Equality of $q_{S 1} n_{S 1}$ and $q_{2} n_{2}$ over a strictly positive time interval implies, as pointed out in the article, that their respective rates of change are equal over this interval, which from (A39) and (A40) implies that $R\left(=Y_{M}^{-(\sigma-1)}\right)$ is fixed in this interval, and given by (73) in the article. From (A38), fixity of R, and hence Y_{M}, and of $q_{2} n_{2}\left(=q_{S 1} n_{S 1}\right.$, fixed by (A43)) implies that n_{2} has also to be fixed, as asserted in the text.
(b) Analogously, from (A30)-(A31) and (A39)-(A42) it is easily seen that if any two of $\dot{n}_{S 1} / n_{S 1}, \dot{n}_{2} / n_{2}$, and $\dot{n}_{M 1} / n_{M 1}$ are strictly positive over a strictly positive time interval (requiring that the rates of change of the corresponding $q_{k} n_{k}$ be equal) then R, and hence Y_{M}, cannot change during that interval.

D. Further Analysis of the Socially Optimal Path

We first study Regime SP5, in which only \dot{n}_{2} / n_{2} can be positive. Letting W_{2} and $N\left(n_{M 1}, n_{2}\right)$ denote $\left(q_{2} n_{2}\right)^{-1}$ and $n_{M 1}^{-\beta_{1}\left(1-\alpha_{M 1}\right) / \alpha_{M 1}} n_{2}^{-\beta_{2}\left(1-\alpha_{2}\right) / \alpha_{2}}$ respectively, and using (A40) and other equations, Regime SP5 is characterized by:
(A45) $\quad \dot{W}_{2} / W_{2}=\left(\alpha_{2}^{-1}-1\right)\left\{\beta_{2} a^{1 / \sigma-1} W_{2}^{1 / \sigma} N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}+\tau \theta_{2} W_{2}\right\}-\rho$
(A46) $\dot{n}_{2} / n_{2}=a^{-1}-\tau W_{2}-a^{1 / \sigma-1} W_{2}^{1 / \sigma} N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}$
and a further equation, in $\dot{W}_{M 1} / W_{M 1}$ ((A47) below, with $n_{M 1}$ fixed and n_{2} varying: it should be noted that the \dot{W}_{i} / W_{i} differential equations ($i=S 1,2, M 1$) are all regime-independent, but which n_{i} variables in those equations are fixed and which changing are regime-dependent). With $n_{M 1}$ fixed at $\hat{n}_{M 1}$ (to be determined subsequently), (A45) and (A46) generate a phasediagram in $n_{2}-W_{2}$ space. Both $\dot{W}_{2} / W_{2}=0$ and $\dot{n}_{2} / n_{2}=0$ loci are positively sloped, and we obtain Fig 2 below.

Since, as will be seen, SP5 will going forward be succeeded by SP1, the steady-state value of W_{2}, W_{2}^{*}, is simply the inverse of $q_{S 1} n_{S 1}$ as given in (A43). It is easily shown that strict positiveness of the steady-state value of L_{r} ($f n .25$ of main text) implies that the two loci in Fig 2 intersect in the positive quadrant, at \hat{W}_{2} say, and that $W_{2}^{*}<\hat{W}_{2}$. Thus, in SP5 there exists a unique north-east trajectory commencing at n_{20} (not drawn) and leading to point A in Fig 2, and when A is attained there will be an instantaneous switch to SP1, entailing no change in W_{2} or $W_{S 1}\left(=\left(q_{S 1} n_{S 1}\right)^{-1}\right)$, but an instantaneous switch in labour devoted to $R \& D$ from innovation in set 2 to set $S 1$. (A rising W_{2} during SP5 implies a falling $q_{2} n_{2}$, until it falls to equality with the unchanging $q_{S 1} n_{S 1}$, at which point the switch occurs: note also that the steady-state point A is not at the intersection of the two loci, unlike in customary analyses.) The analysis is of course conditional on the value of $\hat{n}_{M 1}$: a higher value of this would cause the loci to shift leftwards, except at the origin, but the final value of W_{2} remains at W_{2}^{*}, while the final value of n_{2} will be lower.

We next examine Regime SP6, in which only $\dot{n}_{M 1} / n_{M 1} \geq 0$. Using (A42) and other equations, and letting $W_{M 1}$ denote $\left(q_{M 1} n_{M 1}\right)^{-1}$, we now have

$$
\begin{align*}
& \text { (A47) } \dot{W}_{M 1} / W_{M 1}=\beta_{1}\left(\alpha_{M 1}^{-1}-1\right) a^{1 / \sigma-1} W_{M 1}^{1 / \sigma} N\left(n_{M 1}, n_{20}\right)^{\left(1-\sigma^{-1}\right)}-\rho \tag{A47}\\
& \text { (A48) } \dot{n}_{M 1} / n_{M 1}=a^{-1}-\tau W_{M 1}-a^{1 / \sigma-1} W_{M 1}^{1 / \sigma} N\left(n_{M 1}, n_{20}\right)^{\left(1-\sigma^{-1}\right)}
\end{align*}
$$

and (A45) above, with n_{2} now fixed and $n_{M 1}$ varying. With n_{2} fixed in this regime at n_{20} we have a phase-diagram in $n_{M 1}-W_{M 1}$ space. We require that the productivity term for set $M 1$ $\beta_{1}\left(\alpha_{M 1}^{-1}-1\right)$ be large enough that $\rho / \beta_{1}\left(\alpha_{M 1}^{-1}-1\right)<a^{-1}$, failing which this regime cannot form
part of the optimal solution ${ }^{3}$: the resulting phase-diagram is very similar to Fig 2 , with n_{2} and W_{2} replaced by $n_{M 1}$ and $W_{M 1}$ and with the $\dot{n}_{M 1} / n_{M 1}=0$ locus cutting the $\dot{W}_{M 1} / W_{M 1}=0$ locus from above (but with the latter locus rising continually, without a finite asymptote). We also note that if, proceeding forwards now, SP5 is to succeed SP6, this will have to occur at a point at which the rising W_{2} path cuts the rising $W_{M 1}$ from above, after which $W_{M 1}$ rises above $W_{2}\left(q_{M 1} n_{M 1}\right.$ falls below $\left.q_{2} n_{2}\right)$, and both converge to their respective steady-state values at exactly the same finite time, the time at which the switch to SP1 occurs. ${ }^{4}$

Heuristically, it is helpful to visualize these developments by using horizontal and vertical cross-sections of a three-dimensional phase-diagram (Fig 3 below). In analyzing this, we note first that our system is 'sequentially block-recursive': in Regime SP5 (A45) and (A46) form a self-contained dynamic system in $n_{2}-W_{2}$ space, while the behaviour of $W_{M 1}$ depends on that of n_{2} and W_{2}; in SP6 (A47) and (A48) are self-contained, and influence the behaviour of W_{2}. In the horizontal $n_{2}-W_{2}$ plane in Fig 3, drawn for SP5, we have, to avoid clutter, drawn just the $\dot{W}_{2} / W_{2}=0$ locus, as well as the trajectory $B A$ commencing from n_{20} and ending at the steady-state point A. In the vertical $W_{2}-W_{M 1}$ plane we have for the same Regime drawn a cross-section of the contemporaneous trajectory $C D$, which has to reach the steady-state point D at precisely the same time as point A below is attained (the $\dot{W}_{M 1} / W_{M 1}=0$ locus for SP5 is not drawn). Notice that point D lies above the 45° line, since $W_{M 1}^{*}>W_{2}^{*}$. We now come to the critical point. Proceeding backwards from the steady-state points A and D along the respective cross-sections to the start point of Regime SP5, which is where $n_{2}=n_{20}$, ${ }^{5}$ what assurance is there that, at the start point, point C will lie on the 45° line, as it must (as explained earlier, the crossover into SP5 occurs exactly when $W_{M 1}=W_{2}$)? To assure this, $\hat{n}_{M 1}$ has to be chosen accordingly, which serves to pin down the solution for this variable, denoted $n_{M 1}^{*}$. Thus, the preceding Regime SP6 will have to prevail until $n_{M 1}$ rises to this value, and the final steady-state value of n_{2} is then determined by this and the steady-state values of Y_{M} and W_{2}. It follows that $n_{M 1}^{*}$ is a function of the initial condition n_{20} : the steady-state values of $n_{M 1}$ and n_{2} are thus not independent of this particular initial condition of the model! We also note (a) that as $\hat{n}_{M 1}$ is varied the paths $B A$ and $C D$ will change, except for their ending values W_{2}^{*} and $W_{M 1}^{*}$ and the requirement that point B lie somewhere along the $n_{2}=n_{20}$ line, so as to achieve equality of the start values of W_{2} and $W_{M 1}$ of SP5 (when $\hat{n}_{M 1}=n_{M 1}^{*}$), and (b) at the very beginning of the optimal growth process, when SP6 commences, the values of the co-state variables q_{2} and $q_{M 1}$ will as usual have to be

[^1]chosen to ensure that the resulting W_{2} and $W_{M 1}$ paths arrive at the above-indicated SP5 start value at the same time.

Formal validation of the foregoing heuristic argument turns out to be a highly complicated affair, and in Section D below we linearize the model in the SP5 phase and provide a precise algebraic solution for $n_{M 1}^{*}$, clearly showing its dependence on n_{20}. Finally, using (A45) and (A47), at any switch-point between SP5 and SP6 (at which $W_{M 1}=W_{2}$), we have $\dot{W}_{M 1} / W_{M 1}-\dot{W}_{2} / W_{2}=\left\{\left[\beta_{1}\left(\alpha_{M 1}^{-1}-1\right)-\beta_{2}\left(\alpha_{2}^{-1}-1\right)\right] R-\tau \theta_{2}\left(\alpha_{2}^{-1}-1\right)\right\} W_{2}$. The squarebracketed term is positive (fn. 4 above), and R is declining as Y_{M} grows. Thus, it is possible for the entire term in braces to be positive at a low value of Y_{M}, implying a switch from set $M 1$ to 2, and to be negative at another hypothetical switch point at a higher value of Y_{M}, but it is not possible for there to then be a later switch to set 2 again. Given $W_{M 1}^{*}>W_{2}^{*}$, however, and continuity of the optimal W_{i} trajectories, innovation in set 2 , and not set $M 1$, must occur immediately prior to the final switch to SP1. Thus as asserted the forward sequence of stages is indeed from SP6 to SP5 to SP1.

E. Linearization of Regime SP5 of the Social Planner's Problem

Terminal values $W_{M 1}^{*}$ and W_{2}^{*} of Regime SP5 have been provided earlier, and n_{2}^{*}, and thence $n_{M 1}^{*}$, are to be determined. Letting the superscript ' d ' denote actual minus steady-state value, and x the column vector ($W_{M 1}^{d}, W_{2}^{d}, n_{2}^{d}$)' (primes denote transpose), linearization of (A47) (with $N\left(n_{M 1}, n_{20}\right)^{\left(1-\sigma^{-1}\right)}$ replaced by $N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}$), (A45) and (A46) around the steady state yields, in matrix notation:
(A49) $\dot{x}=A x+b$,
where the elements of the matrix A are
(A50) $a_{11}=W_{M 1}^{*} \beta_{1}\left(\alpha_{M 1}^{-1}-1\right) R^{*} \quad(=\rho)$
(A51) $a_{12}=-\rho W_{M 1}^{*}\left(1-\sigma^{-1}\right) / W_{2}^{*}$
(A52) $a_{13}=-\rho W_{M 1}^{*} \beta_{2}\left(\alpha_{2}^{-1}-1\right)\left(1-\sigma^{-1}\right) / n_{2}^{*}$
(A53) $a_{21}=0$
(A54) $a_{22}=\left(\alpha_{2}^{-1}-1\right)\left[\beta_{2} \sigma^{-1} R^{*}+\tau \theta_{2}\right] W_{2}^{*}$
(A55) $a_{23}=-\left[\beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*}\right]^{2}\left(1-\sigma^{-1}\right) R^{*} / n_{2}^{*}$
(A56) $a_{31}=0$
(A57) $a_{32}=-n_{2}^{*}\left[\tau+\sigma^{-1} R^{*}\right]$
(A58) $a_{33}=a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}$, where
(A59) $L_{r}^{*}=1-a W_{2}^{*}\left[\tau+R^{*}\right]$,
and b is the column vector $\left(0,0, n_{2}^{*} L_{r}^{*}\right)^{\prime}$. From the third row of (A49) we thus note that \dot{n}_{2}^{d} is not 0 at the steady-state value of $x\left(=(0,0,0)\right.$ '), but \dot{n}_{2}^{d} here refers to the left-hand derivative of n_{2}^{d} : as explained earlier, there occurs an instantaneous switch to SP1 at the steady-state point, so that the right-hand derivative of n_{2}^{d} is indeed 0 .
(A49) is a block-recursive system, with \dot{W}_{2}^{d} and \dot{n}_{2}^{d} not dependent on $W_{M 1}^{d}$: as such, one eigenvalue of the system is simply $a_{11}(=\rho)$, and the other two are the eigenvalues of the lower right 2×2 sub-matrix of A. It considerably simplifies the algebra if we now suppose
that the determinant of this sub-matrix, $a_{22} a_{33}-a_{32} a_{23}$, is 0 , so that these two eigenvalues are equal: given that our aim is in part to simply illustrate the existence of Initial Condition Dependence in the model, and that a large number of parameters appears in this determinant, so that setting it to 0 does not appear to entail particularly severe economic restrictions, such an algebraic simplification appears acceptable. With repeated roots the solution of the (W_{2}^{d}, n_{2}^{d}) block takes the form (for convenience, the start time of Regime SP5 is set at 0):

$$
\begin{align*}
W_{2}^{d} & =L e^{\left(a_{22}+a_{33}\right) t}-\frac{a_{23} b_{3}}{a_{22}+a_{33}} t+X, \tag{A60}\\
n_{2}^{d} & =\frac{a_{32}}{a_{22}} L e^{\left(a_{22}+a_{33}\right) t}+\frac{a_{22} b_{3}}{a_{22}+a_{33}} t-\left[\frac{b_{3}}{a_{22}+a_{33}}+\frac{a_{32}}{a_{33}} X\right], \tag{A61}
\end{align*}
$$

where L and X are to be determined. We may then solve for $W_{M 1}^{d}$:

$$
\begin{align*}
W_{M 1}^{d}= & N_{1} e^{a_{11} t}+\frac{\left(a_{12}+a_{13} a_{32} a_{22}^{-1}\right) L}{L_{r}^{*} / a} e^{\left(a_{22}+a_{33}\right) t}+\frac{b_{3}\left(a_{12} a_{23}-a_{13} a_{22}\right)}{a_{11}\left(a_{22}+a_{33}\right)} t- \tag{A62}\\
& \frac{\left(a_{12} a_{33}-a_{13} a_{32}\right)}{a_{11} a_{33}} X,
\end{align*}
$$

with N_{1} to be determined. Our system thus has 5 unknowns $-n_{2}^{*}, L, X, N_{1}$, and \hat{t}, say, the terminal time, at which the switch from SP5 to SP1 occurs. We also have 5 equations, namely each of ($W_{M 1}^{d}, W_{2}^{d}, n_{2}^{d}$) has to equal 0 at $t=\hat{t}, W_{M 1}$ ($n o t W_{M 1}^{d}$) has to equal W_{2} at $t=0$, and $n_{2}^{*}+n_{2}^{d}(0)$) has to equal the given initial value n_{20}. Thus, n_{2}^{*} depends on n_{20}, as we will now explicitly show.

After some exceedingly tedious derivations (earlier as well), we finally obtain the following solutions. L, which is negative, is, conditional on n_{2}^{*}, the solution of an implicit equation:

$$
\begin{align*}
& (-L) e^{\frac{(-L)\left(a^{-1} L_{L}^{*}+\rho\right)^{2}\left[\tau+\tau_{r}^{-1} R^{*} *\right.}{\left.a^{*} L_{r}^{*} \rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]^{2}} \frac{\left(a^{-1} L_{r}^{*}\right)^{-1}\left(a^{-1} L_{r}^{*}+\rho\right)^{2} z-\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}{\left[\rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}}= \tag{A63}\\
& \frac{a^{-1} L_{r}^{*}\left[\rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}{\left(a^{-1} L_{r}^{*}+\rho\right)^{2}\left[\tau+\sigma^{-1} R^{*}\right]},
\end{align*}
$$

where $z=1-\left(n_{20} / n_{2}^{*}\right)$: indeed, n_{2}^{*} will appear in this form in all our solution equations. We also have:
(A64) $\hat{t}=\frac{(-L)\left(a^{-1} L_{r}^{*}+\rho\right)\left[\tau+\sigma^{-1} R^{*}\right]}{a^{-1} L_{r}^{*}\left[\rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]^{2}}+$

$$
\frac{\left(a^{-1} L_{r}^{*}+\rho\right) z}{\left(a^{-1} L_{r}^{*}\right)\left[\rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}-\frac{\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}{\left[\rho-\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]\left(a^{-1} L_{r}^{*}+\rho\right)}
$$

(A65) $X=\frac{\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right] L}{\left(\alpha_{2}^{-1}-1\right)\left[\beta_{2} \sigma^{-1} R^{*}+\tau \theta_{2}\right] W_{2}^{*}}+$

$$
\frac{\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right] a^{-1} L_{r}^{*}}{\left[\tau+\sigma^{-1} R^{*}\right]\left(a^{-1} L_{r}^{*}+\rho\right)}-\frac{\left[a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}\right]}{\left[\tau+\sigma^{-1} R^{*}\right]} z
$$

$$
\begin{gather*}
N_{1}=\rho W_{M 1}^{*}\left(1-\sigma^{-1}\right)\left(\alpha_{2}^{-1}-1\right)\left\{\frac{\tau\left[\beta_{2}-\theta_{2}\right](-L)}{\left(\alpha_{2}^{-1}-1\right)\left[\beta_{2} \sigma^{-1} R^{*}+\tau \theta_{2}\right] W_{2}^{*} a^{-1} L_{r}^{*}} e^{a^{-1} L_{t}^{*} \hat{t}}-\right. \tag{A66}\\
\left.\beta_{2}\left(a^{-1} L_{r}^{*}+\rho\right)^{-2} a^{-1} L_{r}^{*} e^{-\rho \hat{t}}\right\}
\end{gather*}
$$

(A67)

$$
\begin{aligned}
&\left\{\frac{\beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} \tau \theta_{2}}{\left[\beta_{2} \sigma^{-1} R^{*}+\tau \theta_{2}\right]}+\left(\frac{W_{M 1}^{*}}{W_{2}^{*}}-1\right)\left[\beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*}+\frac{a^{-1} L_{r}^{*}+\left(1-\sigma^{-1}\right) \beta_{2}\left(\alpha_{2}^{-1}-1\right) W_{2}^{*} R^{*}}{\left[\tau+\sigma^{-1} R^{*}\right]}\right]\right\} . \\
&\left(1-\sigma^{-1}\right)\left[\frac{a^{-1} L_{r}^{*}}{a^{-1} L_{r}^{*}+\rho}-z\right]+W_{2}^{*}\left(\frac{W_{M 1}^{*}}{W_{2}^{*}}-1\right)=(-L) \frac{a^{-1} L_{r}^{*}+\rho}{\left(\alpha_{2}^{-1}-1\right)\left[\beta_{2} \sigma^{-1} R^{*}+\tau \theta_{2}\right] W_{2}^{*}} . \\
&\left\{\frac{W_{M 1}^{*}}{W_{2}^{*}} \frac{\tau \theta_{2}}{\beta_{2} R^{*}}+\left(\frac{W_{M 1}^{*}}{W_{2}^{*}}-1\right)\right\}
\end{aligned}
$$

(A63) and (A67) jointly determine ($-L$) and z, after which the remaining unknowns are determined. We thus study these two equations next. Inspection of (A63) shows that if $z=0$, $(-L)$ has an explicit solution that is simply given by the right side of (A63) (the term in e equals 1 at this value of $(-L)$): the solution is unique, since the left side is strictly increasing in ($-L$) while the right is constant. Successive differentiation of (A63) with respect to z also shows that $(-L)$ is a decreasing convex function of z, and the same is thus true of the right side of (A67), denoted RHS. The left-side of (A67), LHS, is a decreasing linear function of z, and with some algebraic effort it can be shown that the vertical intercept (at $z=0$) of LHS strictly exceeds that of $R H S$, given that $W_{M 1}^{*}>W_{2}^{*}$: in the hypothetical case that these are equal, RHS will be tangent to LHS at $z=0$, and for $z>0$ will lie above it. For $W_{M 1}^{*}>W_{2}^{*}$ there is thus a unique solution for z, denoted $z^{*}\left(<1^{6}\right)$.

To conclude, z^{*} and n_{20} will jointly determine n_{2}^{*}, and n_{2}^{*}, R^{*}, and W_{2}^{*} will jointly determine $n_{M 1}^{*}$. We assume that the initial value of $n_{M 1}$ is less than $n_{M 1}^{*}$, so that the first phase of the optimal path is indeed SP6: failing this, the system will simply transit from SP5 to SP1, and the final value of n_{2} will be determined residually from R^{*}, W_{2}^{*}, and the initial $n_{M 1}$.

F. Policy for the Decentralized Economy

Let $\left(1-h_{k}\right)(k=S 1, M 1,2)$ denote the subsidies to purchasers of inputs from group k, who thus now pay $h_{k} p_{k}$ for the respective composite inputs, and ($1-b_{k}$) the subsidies to employers of labour in $R \& D$ activities, who thus face wage costs of $b_{k} w$. These should be inserted in the relevant equations earlier, and in Regime 1 we finally arrive at

$$
\begin{align*}
& \dot{n}_{S 1} / n_{S 1}=(1 / 2 a)\left\{1-\left[1-\theta\left(1-\alpha_{S 1}\right) / h_{S 1} b_{S 1}+\theta_{2}\left(1-\alpha_{2}\right) / h_{2} b_{2}\right] G-\right. \tag{A68}\\
& {\left.\left[1+\beta_{2}\left(1-\alpha_{2}\right) / h_{2} b_{2}\right] Z\right\} \text {, where } } \\
& Z=\tau^{-1 / \sigma} w^{-1 / \sigma}\left(\alpha_{M 1} / h_{M 1}\right)^{-\beta_{1}(1-1 / \sigma)} n_{M 1}^{-\beta_{1}(1-1 / \sigma)\left(1-\alpha_{M 1}\right) / \alpha_{M 1}} . \tag{A69}\\
& \quad\left(\alpha_{2} / h_{2}\right)^{-\beta_{2}(1-1 / \sigma)} n_{2}^{-\beta_{2}(1-1 / \sigma)\left(1-\alpha_{2}\right) / \alpha_{2}}, \\
&) \tag{A70}\\
& \dot{n}_{2} / n_{2}=(1 / 2 a)\left\{1-\left[1-\theta\left(1-\alpha_{S 1} h_{S 1}^{-1}\right)+\theta\left(1-\alpha_{S 1}\right) / h_{S 1} b_{S 1}-\theta_{2}\left(1-\alpha_{2} h_{2}^{-1}\right)-\right.\right. \\
&\left.\left.\left.\left.\theta_{2}\left(1-\alpha_{2}\right) / h_{2} b_{2}\right)\right] G-\left[1-\beta_{1}\left(1-\alpha_{M 1} / h_{M 1}\right)-\beta_{2}\left(1-\alpha_{2} / h_{2}\right)-\beta_{2}\left(1-\alpha_{2}\right) / h_{2} b_{2}\right)\right] Z\right\}
\end{align*}
$$

[^2]To attain the social optimum, it is necessary for the values of $\dot{n}_{k} / n_{k}, k=S 1,2$, from these equations to coincide with the corresponding values in Regime $\operatorname{SP1} 1^{7}$ (\dot{n}_{2} / n_{2} is of course 0 in SP1). A first requirement for this is that $h_{k}=\alpha_{k}-$ a standard result, which applies also in other regimes. Also, from inspection of the relevant equations one might conjecture that $\tau v_{S 1}^{-1} v_{S 1} n_{S 1}\left(=\tau b_{2}^{-1} v_{2} n_{2}\right)$ should correspond to $q_{2} n_{2}$ (we now have that $w=\left(a b_{S 1}\right)^{-1} v_{S 1} n_{S 1}=$ $\left(a b_{2}\right)^{-1} v_{2} n_{2}$ in Regime 1, which justifies the preceding bracketed equality): we later verify that this conjecture is correct. Next, we logarithmically differentiate the equation $b_{S 1}^{-1} v_{S 1} n_{S 1}=$ $q_{2} n_{2}$ with respect to t (noting that in SP1 $q_{2} n_{2}=q_{S 1} n_{S 1}$ is constant), use (A68) and its required equality with the socially optimal $\dot{n}_{S 1} / n_{S 1}$, and also note that in (55) the second right-hand term should be divided by $h_{S 1}$: we then end up with a differential equation in $b_{S 1}$ alone, whose only stable solution is a constant one,
(A71) $b_{S 1}^{*}=\rho /\left\{\rho+a^{-1}-\rho\left(1-\theta_{2} \beta_{2}^{-1}\right)\left[\theta\left(\alpha_{S 1}^{-1}-1\right)\right]^{-1}-\rho\left[\beta_{2}\left(\alpha_{2}^{-1}-1\right)\right]^{-1}\right\}$
The terms in braces above, excluding the first term ρ, add up to L_{r} / a which is positive ($f n$. 25 of main text), so that $b_{S 1}^{*} \in(0,1)$: the optimal subsidy to $R \& D$ in $S 1$ is strictly positive. Substituting $b_{S 1}^{*}$ into (A70) and equating private and socially optimal \dot{n}_{2} / n_{2} 's, we derive the optimal b_{2}, b_{2}^{*}, which is 1 - no subsidy should be given to $R \& D$ in set 2 , which is of course consistent with the zero value of \dot{n}_{2} / n_{2} in this Regime.

Next, we consider the decentralized implementation of SP5, through policy intervention in Regime 5. Since only $\dot{n}_{2} / n_{2} \geq 0$ in these regimes, only the equalities $w=\left(a b_{2}\right)^{-1} v_{2} n_{2}=\left(a \tau W_{2}\right)^{-1}$ must hold, and differentiating the latter equality (note that this equality implies differentiability of b_{2} over time) with respect to t and substituting from earlier equations we arrive at

$$
\begin{gather*}
\dot{b}_{2} / b_{2}=a^{-1}-\tau W_{2}-a^{1 / \sigma-1} W_{2}^{1 / \sigma} N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}-\left(\alpha_{2}^{-1}-1\right)\left[\tau \theta_{2} W_{2}+\right. \tag{A72}\\
\left.\beta_{2} a^{1 / \sigma-1} W_{2}^{1 / \sigma} N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}\right]\left(b_{2}^{-1}-1\right),
\end{gather*}
$$

together with Regime SP5's differential equations in W_{2} and n_{2}. Since b_{2} is continuous, it must converge to 1 by the end of SP5: also the first three expressions on the right of (A72) are jointly positive, since they equal L_{r} / a. If σ is close to 1 , so that the movement of $W_{2}^{1 / \sigma} N\left(\hat{n}_{M 1}, n_{2}\right)^{\left(1-\sigma^{-1}\right)}$ is governed by the rising movement of $W_{2}, \dot{b}_{2} / b_{2}$ will have to be positive throughout (which requires from (A72) that b_{2} cannot be below 1 by too much to begin with), since otherwise \dot{b}_{2} / b_{2} will become increasingly negative over time. If σ is large, it is conceivable that b_{2} will initially fall and then rise, although it appears unlikely on economic grounds. We conclude that the optimal b_{2} is time-varying, unlike in the GrossmanHelpman model, and gradually moves to 1 from below, although conceivably nonmonotonically.

[^3]Lastly, a precisely analogous characterization applies in respect of the evolution of $b_{M 1}$ in the preceding phase, in which decentralized implementation of SP6 is required. Thus, reflecting the optimal sequence of phases of structural change, $R \& D$ subsidization evolves from subsidizing input set $M 1$, to set 2 , to set $S 1$, while intermediate-input purchase is optimally subsidized throughout.

Figure 2

Figure 3

[^0]: ${ }^{1}$ From (A9) it is not possible to have a parameter configuration such that the coefficient of G / a is negative and that of Z / a positive. In all other cases, with the backwards crossover from Regime 2 to 3 occuring in a northwest direction, the resulting phase diagrams show that the trajectory cannot transition to any other phase.
 ${ }^{2}$ In Regime 6, all three loci $-\dot{G} / G=0, \dot{n}_{M 1} / n_{M 1}=0$, and $\dot{Z} / Z=0$ - will intersect at a common point in the positive quadrant, and will all be negatively-sloped, with the flattest (the algebraically largest) slope belonging to the $\dot{G} / G=0$ locus, followed by the $\dot{Z} / Z=0$ and then the $\dot{n}_{M 1} / n_{M 1}=0$ loci. The backward saddle-path trajectory will thus extend all the way towards the vertical axis. It should be mentioned that there appears to exist a slight

[^1]: ${ }^{3} n_{M 1}$ could then only rise if $W_{M 1}$ falls, and $W_{M 1}$ would then continue to fall even after $n_{M 1}$ ceases rising, at an rate that eventually violates the transversality condition.
 ${ }^{4}$ The steady-state value $W_{M 1}^{*}\left(=\rho / \beta_{1}\left(\alpha_{M 1}^{-1}-1\right) R^{*}\right.$, at which $\left.\dot{W}_{M 1} / W_{M 1}=0\right)$ must thus exceed W_{2}^{*}, which can be shown to require that $\beta_{2}\left(\alpha_{2}^{-1}-1\right)$ not be too far below $\beta_{1}\left(\alpha_{M 1}^{-1}-1\right)$ (otherwise the system would transition directly from SP6 to SP1, and the final value of R would be different): it must however be below $\beta_{1}\left(\alpha_{M 1}^{-1}-1\right)$, otherwise SP6 would not be part of the optimal path, which would simply transition from SP5 to SP1.
 ${ }^{5}$ Since n_{2} is constant during SP6, which as pointed out below is the first phase of the optimal growth process, its value n_{20} at the start of SP5 is the same as its value at the commencement of the entire optimal growth process.

[^2]: ${ }^{6}$ As W_{2}^{*} falls below $W_{M 1}^{*} z^{*}$ will gradually increase, to some value less than unity: $z^{*}=1$ implies n_{2}^{*} is infinite, which is not possible since \hat{t} would still be finite then.

[^3]: ${ }^{7}$ For this purpose, it is useful to work with the 'original' $\dot{n}_{S 1} / n_{S 1}$ and \dot{n}_{2} / n_{2} equations of SP1, which are derived by solving (A38) (differentiated with respect to t and then from (66) set equal to 0 , and with $\phi=0$), (A39), (A40), and the equation $\dot{n}_{S 1} / n_{S 1}+\dot{n}_{2} / n_{2}=L_{r} / a=$ $(1 / a)-\left\{1+\left[\theta\left(\alpha_{S 1}^{-1}-1\right)-\theta_{2}\left(\alpha_{2}^{-1}-1\right)\right] / \beta_{2}\left(\alpha_{2}^{-1}-1\right)\right\} \rho /\left[\theta\left(\alpha_{S 1}^{-1}-1\right)\right]$, for $\dot{n}_{S 1} / n_{S 1}, \dot{n}_{2} / n_{2}$, $\dot{q}_{S 1} / q_{S 1}$, and \dot{q}_{2} / q_{2}.

